Telegram Group & Telegram Channel
🖥 Важная особенность генераторов в Python!

Давай разберемся, как это работает:

Что такое Генератор?
Функция my_generator_function является генератором, потому что она использует ключевое слово yield.

В отличие от обычной функции, которая выполняет весь код и возвращает одно значение через return, генератор "приостанавливается" на каждом yield, возвращая указанное значение.

При следующем вызове он возобновляет работу с того места, где остановился.
Как работает yield:
Когда вы вызываете gen = my_generator_function(), код внутри функции не выполняется.

Создается специальный объект-генератор (gen).
Первый вызов next(gen) заставляет функцию выполниться до первого yield 1. Функция возвращает 1 и приостанавливается.
Второй вызов next(gen) возобновляет выполнение с точки после yield 1 и доходит до yield 2. Функция возвращает 2 и снова приостанавливается.
Именно поэтому print(next(gen), next(gen)) выводит 1 2.

Как работает return в генераторе:
Когда поток выполнения внутри генератора доходит до оператора return (в нашем случае return 73) или просто до конца функции без явного return, генератор считается завершенным.

Важно: Значение, указанное в return (здесь 73), не возвращается как обычное значение через yield. Вместо этого генератор выбрасывает (raises) специальное исключение: StopIteration.

Этот механизм StopIteration - стандартный способ в Python сигнализировать, что итератор (а генератор - это тип итератора) исчерпан.

Перехват StopIteration и получение значения:
В правой части кода мы пытаемся вызвать next(gen) еще раз.

Генератор возобновляется после yield 2, доходит до return 73 и выбрасывает StopIteration.

Конструкция try...except StopIteration as err: перехватывает это исключение.

Ключевой момент (показан стрелкой на картинке): Значение, которое было указано в операторе return генератора (73), становится доступным как атрибут .value пойманного исключения StopIteration.

Поэтому print(err.value) выводит # 73.

Итог:
Teturn в генераторе не производит очередное значение, а завершает его работу. При этом значение из return "упаковывается" в исключение StopIteration, сигнализирующее об окончании, и его можно извлечь из атрибута .value этого исключения, если перехватить его вручную.

Стандартный цикл for item in generator(): в Python автоматически обрабатывает StopIteration (просто завершает цикл) и не дает прямого доступа к err.value. Поэтому для демонстрации этого механизма и получения возвращаемого значения используется явный вызов next() внутри блока try...except.

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pythonl/4749
Create:
Last Update:

🖥 Важная особенность генераторов в Python!

Давай разберемся, как это работает:

Что такое Генератор?
Функция my_generator_function является генератором, потому что она использует ключевое слово yield.

В отличие от обычной функции, которая выполняет весь код и возвращает одно значение через return, генератор "приостанавливается" на каждом yield, возвращая указанное значение.

При следующем вызове он возобновляет работу с того места, где остановился.
Как работает yield:
Когда вы вызываете gen = my_generator_function(), код внутри функции не выполняется.

Создается специальный объект-генератор (gen).
Первый вызов next(gen) заставляет функцию выполниться до первого yield 1. Функция возвращает 1 и приостанавливается.
Второй вызов next(gen) возобновляет выполнение с точки после yield 1 и доходит до yield 2. Функция возвращает 2 и снова приостанавливается.
Именно поэтому print(next(gen), next(gen)) выводит 1 2.

Как работает return в генераторе:
Когда поток выполнения внутри генератора доходит до оператора return (в нашем случае return 73) или просто до конца функции без явного return, генератор считается завершенным.

Важно: Значение, указанное в return (здесь 73), не возвращается как обычное значение через yield. Вместо этого генератор выбрасывает (raises) специальное исключение: StopIteration.

Этот механизм StopIteration - стандартный способ в Python сигнализировать, что итератор (а генератор - это тип итератора) исчерпан.

Перехват StopIteration и получение значения:
В правой части кода мы пытаемся вызвать next(gen) еще раз.

Генератор возобновляется после yield 2, доходит до return 73 и выбрасывает StopIteration.

Конструкция try...except StopIteration as err: перехватывает это исключение.

Ключевой момент (показан стрелкой на картинке): Значение, которое было указано в операторе return генератора (73), становится доступным как атрибут .value пойманного исключения StopIteration.

Поэтому print(err.value) выводит # 73.

Итог:
Teturn в генераторе не производит очередное значение, а завершает его работу. При этом значение из return "упаковывается" в исключение StopIteration, сигнализирующее об окончании, и его можно извлечь из атрибута .value этого исключения, если перехватить его вручную.

Стандартный цикл for item in generator(): в Python автоматически обрабатывает StopIteration (просто завершает цикл) и не дает прямого доступа к err.value. Поэтому для демонстрации этого механизма и получения возвращаемого значения используется явный вызов next() внутри блока try...except.

@pythonl

BY Python/ django




Share with your friend now:
tg-me.com/pythonl/4749

View MORE
Open in Telegram


Python django Telegram | DID YOU KNOW?

Date: |

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

Python django from us


Telegram Python/ django
FROM USA